Quantile regression for dynamic partially linear varying coefficient time series models
نویسندگان
چکیده
منابع مشابه
Quantile Regression in Partially Linear Varying Coefficient Models by Huixia
Semiparametric models are often considered for analyzing longitudinal data for a good balance between flexibility and parsimony. In this paper, we study a class of marginal partially linear quantile models with possibly varying coefficients. The functional coefficients are estimated by basis function approximations. The estimation procedure is easy to implement, and it requires no specification...
متن کاملNonparametric Inference for Time-varying Coefficient Quantile Regression
The paper considers nonparametric inference for quantile regression models with time-varying coefficients. The errors and covariates of the regression are assumed to belong to a general class of locally stationary processes and are allowed to be cross-correlated. Simultaneous confidence tubes (SCT) and integrated squared difference tests (ISDT) are proposed for simultaneous nonparametric infere...
متن کاملVarying-Coefficient Functional Linear Regression Models
We propose in this work a generalization of the functional linear model in which an additional real variable influences smoothly the functional coefficient. This leads us to build a varying-coefficient regressionmodel for functional data. We propose two estimators based respectively on conditional functional principal regression and on local penalized regression splines and prove their pointwis...
متن کاملPartially linear censored quantile regression.
Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates ...
متن کاملAdaptive LASSO for Varying-Coefficient Partially Linear Measurement Error Models
This paper extends the adaptive LASSO (ALASSO) for simultaneous parameter estimation and variable selection to a varying-coefficient partially linear model where some of the covariates are subject to measurement errors of an additive form. We draw comparisons with the SCAD, and prove that both the ALASSO and SCAD attain the oracle property under this setup. We further develop an algorithm in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2015
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2015.06.013